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ABSTRACT

A concentric arrangement of boost and sustainer rocket nozzles
has been investigated to determine the effects of base bieed and the
effects of sustainer nozzle diameter and relative longitudinal posi-
tion on the base drag of the body during sustainer operation, The
results of the investigation indicate that the jet-on base drag of a
body can be significantly reduced by the use of base bleed andnozzle
arrangement, and that the jet-on base drag is a function of the jet
thrust, '

The data presented are based on the results of tests in the
Aberdeen Ballistic Research Laboratories 13 by 15 inch supersonic
wind tunnel at Mach numbers of 2.0 and 2,5, The model tested had
sustainer nozzle-to-base diameter ratios of 0,10, 0,20, and 0, 30,
and boost nozzle-to-base diameter ratio of 0,80, The sustainer noz-
zle was tested at longitudinal positions between 0. 60 calibers aft to
0.98 calibers forward of the base.
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LIST OF SYMBOLS

CDB Base drag coefficient based on integration of pressure distri-
butions over the total base area excluding the sustainer nozzle
exit area and referenced to the total base area

Cr Thrust coefficient = Thrust/qqy x Reference Area

dn Sustainer nozzle exit diameter

Dg Body base diameter

M Mach number

r'nb Bleed mass flow

z'nj Sustainer nozzle mass flow

m, Body stream-tube mass flow

p Local static pressure

Py Average base pressure, integrated over total base area ex-~

cluding sustainer nozzle exit area

P, Sustainer nozzle chamber pressure
Pj Sustainer nozzle exit static pressure
Poo Free-stream static pressure
900 Free-stream dynamic pressure
\' Velocity
' X Distance from base of model
X, Distance from base of model to base of sustainer nozzle

(Forward is positive.)

FrEesn




I. INTRODUCTION

Several potential applications exist in land combat and air defense
weapons systems for boost-sustain propulsien. One of the advantages
for this type of propulsion lies in the increase in missile performance
arising from energy management considerations., As a part of the over-
all problem, it is necessary to investigate techniques for minimizing
missile base drag. Current methods allow prediction and optimization
of body forebody and friction drag with a reasonable degree of accuracy;
however, methods are not available for reliably predicting the base drag
of a body with an operating jet, The jet-on base drag of a body can be
as high as 50 percent of the total drag; therefore techniques for pre-
dicting the jet-on base drag are needed for proper design and evalua -
tion of the aerodynamic-propulsion configuration of missiles during
sustainer operation,

This report presents the results of the second phase of a study on
base drag reduction conducted as a part of SR Project, Base Drag Re-
duction, Code 5210, 11, 148, A body with concentric boost and sustainer
rocket nozzles has been studied to determine the effects of base bleed,
and the effects of sustainer nozzle diameter and position on the body
base drag. The results of the first phase of the study have been pre-
sented in Reference 1,

The data presented in this report are based on the results of wind
tunnel tests at Mach numbers 2.0 and 2,5, Parameters varied during
the tests were Mach number, base bleed, nozzle diameter, nozzle
position, and sustainer nozzle chamber pressure. The boost nozzle
was inactive and the sustainer jet was simulated with air., The configu-
ration tested was a body of revolution with an ogive nose and a cylindri-
cal afterbody,

II. APPARATUS AND PROCEDURE

The test was conducted in Tunnel No. 1 of the Ballistic Research
Laboratories, Aberdeen Proving Grounds, Maryland. That facility is
a continuous flow, supersonic wind tunnel capable of operating at Mach
numbers from 1.2 to 5.0, and has a test section 13 inches wide by
15 inches high.

The model tested was a body of revolution with a 4-caliber, tangent
ogive nose, and a 2-caliber cylindrical afterbody. It was mounted from
the tunnel ceiling at 0° angle of attack by a rigid strut containing the
instrumentation and air supply lines. A sustainer rocket nozzle, con-
centric to a boost rocket nozzle, could be tested at any of ten longitudinal



positions between -.60 and +.98 calibers from the base of the body.

The sustainer nozzles had exit diameters of 0. 10, 0,20, and 0, 30 cali-
bers and were designed for an exit Mach number of 2,7 (pj/pc = 0.0427).
The sustainer jet was simulated with dry air, and the boost nozzle was
inactive, During the bleed runs, air was bled from the sustainer cham-
ber to the boost nozzle chamber through orifices in the sustainer nozzle
chamber wall, The amount of bleed air was varied by varying the size
and number of bleed orifices. Figure 1 presents sketches of the model
installation and geometry.

The base of the model was instrumented with pressure orifices
along the body just forward of the base, on the base annulus, and along
the interior of the boost nozzle as shown in Figure 1. Pressures at
the orifices were measured with pressure transducers. Sustainer air
supply pressure (pc) was measured at an orifice in the settling chamber
upstream of the nozzle throat,

During each run the sustainer supply pressure was varied while
holding constant the test section Mach number, test section static pres-
sure, sustainer nozzle position, and ratio of bleed to sustainer jet mass
flow., Data recorded were test section stagnation pressure and temper-
ature, sustainer air supply pressure, model orifice pressures, and
transducer reference pressure. Accuracies of the data obtained are
the following:

Mach number +.002
Local model pressures +.0125 psi
Sustainer supply pressure
0 - 15 psi range +.030 psi
0 - 100 psi range +.200 psi
0 - 320 psi range +.600 psi

The model local pressures were reduced to pressure coefficient and
pressure ratio form, and the base drag coefficients were computed by
integrating the base pressure distributions where:

1
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Total base area
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Pi Local pressure coefficient
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A more detailed discussion of the test apparatus and test procedure
as well as the basic data from the test is presented in Reference 2,

III. RESULTS

The wind tunnel test results from Reference 2 have been analyzed
to determine the effects of the various test parameters on base drag,
The analysis is:limited to values of sustainer chamber pressures suf-
ficient to completely fill the sustainer nozzle, Although the test config-
uration has an inactive boost rocket nozzle concentric to an active
sustainer rocket nozzle, or in effect an open base, the data are com-
parable to data for closed base configurations except for conditions
where the sustainer jet impinged on the boost nozzle wall. Subsequent
references to the nozzle and jet will refer to the sustainer nozzle and
jet.

Figures 2 through 5 present the basic test results and show the
effects of sustainer nozzle diameter and position and the effects of base
bleed on base drag as a function of jet chamber to free-stream static
pressure ratio., These data exhibit a characteristic variation of base
drag with jet pressure ratio which is discussed in detail and related
to base wake flow in Reference 3,

A, Effect of Diameter Ratio and Mach Number

Analysis of the data for the configuration with the nozzle at the
model base (X,/Dpg = 0.0) shows a dependence of base pressure on
thrust level and jet momentum ratio which are related, Figure 6 pre-
sents base pressure ratio as a function of thrust coefficient and Figure 7
presents base pressure ratio as a function of jet momentum ratio for
nozzle diameter ratios of 0,10, 0,20, and 0. 30 at Mach numbers of
2.0 and 2.5. These data indicate that base pressure ratio is indepen-
dent of nozzle diameter, jet pressure ratio, and free-stream conditions
except for their relative inputs to the thrust coefficient or momentum
ratio, Reference 1 presents data from the first series of tests of the
model at Mach numbers of 2.0, 2,5, 3,0, and 3.5 for a nozzle diameter
ratio of 0.24. Due to instrumentation difficulties, the accuracy of the
data from Reference 1 does not approach the accuracy of the present
data; however, the data are useful to indicate trends and are presented
in Figure 8 as a function of thrust coefficient to illustrate the indepen-
dence of jet-on base pressure on free-stream Mach number except for
its input to thrust coefficient, The relationship between jet-on base
pressure and thrust coefficient and momentum ratio correlates well
with experimental data from sources for bodies with supersonic jets.




B. Effect of Base Bleed

Air was bled into the boost nozzle combustion chamber through
orifices in the sustainer nozzle combustion chamber wall, In most
cases, the bleed mass flow was sufficient to choke the boost nozzle
throat. Figure 9 presents boost nozzle pressure distributions for var-
ious bleed ratios with the 0,20 diameter ratio sustainer nozzle, These
data illustrate that the boost nozzle was choked for all bleed ratios ex-
cept the . 015 with the 0,20 diameter ratio nozzle, and provide data for
convenient determination of the actual ratio of bleed mass flow to sus-
tainer mass flow for conditions where the boost nozzle was choked.
Figure 10 presents calculated values of bleed mass flow ratios based
on the pressure distributions of Figure 9. For values of bleed mass
flow not sufficient to choke the boost nozzle throat, nominal values are
given based on orifice area ratios.

Bleeding gases into the base area increases the base pressure as
a function of the bleed mass, The incremental increase in base pres-
sure ratio due to base bleed is presented in Figure 11 as a function of
the ratio of bleed mass flow to body stream-tube mass flow. The ap-
parent Mach number effect can be removed by dividing the mass flow
ratio by the free-stream velocity. Since the bleed velocity is believed
to be constant, the dependence of the effect of base bleed on base pres-
sure ratio on bleed momentum ratio is indicated. The bleed velocity
at the base could not be determined from the available data, therefore
the bleed momentum ratio could not be calculated. However, since the
base pressure ratio without base bleed is a function of jet momentum
ratio, it is not illogical to believe that the effects of base bleed are also
a function of bleed momentum ratio. The boost nozzle produces some
thrust due to bleed, however the effects on base pressure are far greater
than the effects of bleed thrust alone.

C. Effect of Longitudinal Position

Extension of the sustainer nozzle aft of the base of the body
induces an incremental increase in base pressure which varies almost
linearly with nozzle position but which does not vary with nozzle diam-
eter of jet pressure ratio. An effect of free-stream Mach number is
also indicated; however, sufficient data are not available to determine
the Mach number effects, Figure 12 presents the incremental increase
in base pressure ratio as a function of aft nozzle position. It is antici-
pated that the base pressure would continue to increase with aft nozzle
position until the sustainer nozzle approached the position of the jet-off
trailing shock (X,/Dpg ~ -1.20). Since the aft nozzle positions induce
an increase in base pressure which is independent of nozzle diameter
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and jet pressure ratio, the base pressure cannot be correlated on a
momentum ratio or a thrust coefficient basis,

Movement of thé sustainer nozzle forward into the base cavity in-
duces a corresponding decrease in base pressure until a position is
reached where the sustainer jet inpinges on the boost nozzle. With jet
impingement, the static pressure on the boost nozzle aft of impingement
is increased due to a pressure rise across an oblique shock produced by
impingement., Further movement of the sustainer into the base cavity
increases the area of the boost nozzle affected and also increases the
angle of impingement which in turn causes an increase in pressure rise
across the oblique shock. Therefore movement of the sustainer nozzle
forward after the jet has impinged causes an increase in base pressure,
This effect is discussed in more detail in Reference 1. Itis interesting
to note that after the jet has impinged on the boost nozzle base pressure
again becomes a function of momentum ratio and thrust coefficient,

Figure 13 illustrates the incremental change in base pressure ratio
with nozzle position for the 0.20 d,/Dg nozzle at M = 2.5 for several
jet pressure ratios,

Reference 1 illustrated that, for a given npzzle position, the point
of jet impingement was independent of jet pressure ratio and external
conditions., Figure 14 also illustrates that the point of jet impingement
is independent of nozzle diameter.

IVv. CONCLUSIONS

The following conclusions can be made, based on analysis of the
test data:

1. The base pressure ratio, for bodies with jets coplaner to
the base, can be expressed as a function of either jet momentum ratio
or thrust coefficient and is independent of nozzle diameter, jet pressure
ratio, and free-stream conditions except for their respective inputs to
the momentum ratio and thrust coefficient,

2, The increase in base pressure due to gases bled into the
base area can be expressed as a function of the bleed mass momentum
ratio and is independent of bleed area or free-stream conditions except
for their respective inputs to the momentum ratio,

3. Extending the nozzle aft of the body base causes an increase
in base pressure which is a function of the amount of extension and free-
stream Mach number but is independent of nozzle diameter and jet pres-
sure ratio.




4. Moving the nozzle forward into the body can increase the
base pressure due to impingement of the jet on the body internal surfaces.
The amount is a function of jet conditions and geometry but is indepen-
dent of environmental conditions.

It is recommended that future phases of the base drag reduction study
be conducted to determine the effects on jet-on base drag of thefollowing:
1, Effects of base bleed over wide Mach number range,

2. Effects of aft nozzle extensions over wide Mach number
range and for further aft extensions.

3. Effects of jet Mach number and expansion angle,
4, Effects of jet temperature and physical composition.

5. Effects of afterbody geometry,

6. Potential heating problems associated with flow impingement
on the boost nozzle,
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Figure 9. Effects of Bleed on Base
Pressure Distribution.
M= 2,5; d,/Dg = .20; X,/Dg = 0.00
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Figure 14, 2ffect of Sustainer Nozzle Diameter
Ratio on Local Pressure Distribution.
xn/DB = ,8245; M = 2.5
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